orthographic/layergen.py

530 lines
27 KiB
Python
Raw Normal View History

# -------------------------------------------------------------------
# ORTHOGRAPHIC
# Your personal aerial satellite. Always on. At any altitude.*
# Developed by MarStrMind
# License: Open Software License 3.0
# Up to date version always on marstr.online
# -------------------------------------------------------------------
# layergen.py
# Generates a full-sized geo layer image, based on the required layer
# type. We use a simple randomization method to generate such an
# image, which is then used for the final photo in photogen.
# -------------------------------------------------------------------
import glob
import os
from random import randrange
import random
from PIL import Image, ImageFilter, ImageDraw, ImagePath
from defines import *
from log import *
from tiledb import *
from osmxml import *
from functions import *
class mstr_layergen:
# Initializes the layer generator. can_choose will go false if we need
# a pre-determined layer from another tile, should this be adjacent to it.
# In this case layer_needed will be populated with the appropriate number.
# You also need the zoom level so that we can generate a scaled version.
def __init__(self, tag, value, lat, latnum, lng, lngnum, is_line, is_completion=False):
self._tag = tag
self._value = value
self._latitude = lat
self._lat_number = latnum
self._longitude = lng
self._lng_number = lngnum
self._layerborder = -1
self._tiledb = mstr_tiledb(lat, lng)
self._tiledb.create_tables()
self._is_completion = is_completion
# Define layer size depending on what is wanted
self._imgsize = 0
self._isline = is_line
if mstr_photores == 2048: self._imgsize = 3000
if mstr_photores == 4096: self._imgsize = 6000
#mstr_msg("mstr_layergen", "Layer gen initialized")
# This generates a "border" image, for example farmland usually has a small space of grass
# before the actual crop of farm field itself. This generates this "border" layer,
# and returns it.
# Needs the actual edge mask, and the tag and value to be used as border.
# Perform necessary adjustments on the mask prior to this call, for example blurring or
# other effects.
def genborder(self, edgemask, tag, value):
layer = Image.new("RGBA", (self._imgsize, self._imgsize))
root_folder = mstr_datafolder + "Textures\\" + tag + "\\" + value
# Determine which sources we use
brd = glob.glob(root_folder + "\\brd\\b*.png")
src = -1
if len(brd) == 1: src=1
if len(brd) >= 2:
src = randrange(1, len(brd))
ptc = glob.glob(root_folder + "\\ptc\\b" + str(src) + "_p*.png")
# Load in the sources to work with
brd_src = Image.open(root_folder + "\\brd\\b" + str(src) + ".png")
ptc_src = []
for p in ptc:
ptc_src.append(Image.open(p))
mstr_msg("mstr_layergen", "Border sources selected")
# Begin producing a largely random image
samples = 250 # <- We need this in a moment
for i in range(samples):
imgid = 0
if len(ptc_src) == 1: imgid = 0
if len(ptc_src) >= 2:
imgid = randrange(1, len(ptc_src)) - 1
l = 0 - int(ptc_src[imgid].width / 2)
r = layer.width - int(ptc_src[imgid].width / 2)
t = 0 - int(ptc_src[imgid].height / 2)
b = layer.height - int(ptc_src[imgid].height / 2)
layer.alpha_composite( ptc_src[imgid], ( randrange(l, r), randrange(t, b) ) )
mstr_msg("mstr_layergen", "Border image generated")
# We now need to add the seamless border
layer.alpha_composite( brd_src )
mstr_msg("mstr_layergen", "Layer image completed")
# And now for the Big Mac.
# Generate the layer from the mask.
layer_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
layer_final = Image.composite(layer, layer_comp, edgemask)
# Provide the image
return layer_final
# This generates the layer from the defined mask
def genlayer(self):
mstr_msg("mstr_layergen", "Layer to be generated: " + str(self._latitude) + "-" + str(self._lat_number) + ":" + str(self._longitude) + "-" + str(self._lng_number) + " -- tag: " + self._tag + " - value: " + self._value )
# Before we generate the layer, let's check for airports in this chunk
mstr_msg("mstr_layergen", "Checking for airport/s with ICAO code")
osmxml = mstr_osmxml(0,0)
icao = osmxml.find_icao_codes(mstr_datafolder + "_cache\\tile.xml")
mstr_msg("mstr_layergen", "Found " + str(len(icao)) + " airport/s")
# Runway surface, if any other than concrete/asphalt
rw_surface = ""
# If we find an airport, make a note ...
if len(icao) >= 1:
for i in icao:
# ... but only, if this airport is not already noted
iccheck = self._tiledb.perform_query("SELECT * FROM airports WHERE icao='" + i +"';")
if len(iccheck) == 0:
self._tiledb.insert_icao(i, self._lat_number, self._lng_number, self._latitude, self._longitude)
mstr_msg("mstr_layergen", "Airport/s noted in data file")
rw_surface = osmxml.find_runway_surface(mstr_datafolder + "_cache\\tile.xml")
# The image for the layer itself
layer = Image.new("RGBA", (self._imgsize, self._imgsize))
layer_pix = layer.load()
# There are some things we need to use sources for, and some things, we do not.
# We need to differentiate that.
if (self._isline == False) or (self._is_completion == True):
# Determine where we get the our source material from
root_folder = mstr_datafolder + "Textures\\"
for s in mstr_ortho_layers:
if s[0] == self._tag and s[1] == self._value:
fld_main = len(s)-2
fld_sub = len(s)-1
root_folder = root_folder + s[fld_main] + "\\" + s[fld_sub]
# Determine which sources to use.
# First, we need to check for adjacent tile information. We then either
# need to use the source of any adjacent tile, or we can choose freely.
src = -1
# Find our adjacent tiles
adjtiles = findAdjacentTilesTo(self._lat_number, self._lng_number)
mstr_msg("mstr_layergen", "Performing adjacency check")
# Walk through each tile and see what we can find in relation to this
# tile in the center
# Since we already know the order in adjtiles, we can do this real easy
if self._is_completion == False:
at = self._tiledb.get_adjacency_for_source(adjtiles[0][0], adjtiles[0][1], self._tag, self._value) # Top
ar = self._tiledb.get_adjacency_for_source(adjtiles[1][0], adjtiles[1][1], self._tag, self._value) # Right
ab = self._tiledb.get_adjacency_for_source(adjtiles[2][0], adjtiles[2][1], self._tag, self._value) # Bottom
al = self._tiledb.get_adjacency_for_source(adjtiles[3][0], adjtiles[3][1], self._tag, self._value) # Left
if self._is_completion == True:
at = self._tiledb.get_adjacency_for_completion(adjtiles[0][0], adjtiles[0][1], self._tag, self._value) # Top
ar = self._tiledb.get_adjacency_for_completion(adjtiles[1][0], adjtiles[1][1], self._tag, self._value) # Right
ab = self._tiledb.get_adjacency_for_completion(adjtiles[2][0], adjtiles[2][1], self._tag, self._value) # Bottom
al = self._tiledb.get_adjacency_for_completion(adjtiles[3][0], adjtiles[3][1], self._tag, self._value) # Left
# We are south to the top tile.
if len(at) == 1 and src == -1:
if "b" in at[0][5]: src = int(at[0][4])
# We are west to the right tile.
if len(ar) == 1 and src == -1:
if "l" in ar[0][5]: src = int(ar[0][4])
# We are north to the bottom tile.
if len(ab) == 1 and src == -1:
if "t" in ab[0][5]: src = int(ab[0][4])
# We are east to the left tile.
if len(al) == 1 and src == -1:
if "r" in al[0][5]: src = int(al[0][4])
mstr_msg("mstr_layergen", "Adjacency check completed")
brd = glob.glob(root_folder + "\\brd\\b*.png")
# If the adjacency check returned nothing (src is still -1),
# then pick something
if src == -1:
if len(brd) == 1: src=1
if len(brd) >= 2:
src = randrange(1, len(brd))
ptc = glob.glob(root_folder + "\\ptc\\b" + str(src) + "_p*.png")
# Load in the sources to work with
brd_src = Image.open(root_folder + "\\brd\\b" + str(src) + ".png")
ptc_src = []
for p in ptc:
ptc_src.append(Image.open(p))
mstr_msg("mstr_layergen", "Layer sources selected")
# OK! Load the mask
if self._is_completion == False:
osm_mask = Image.open( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + ".png" )
if self._is_completion == True:
osm_mask = Image.open( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_tile-completion.png" )
# Generate an edge mask from the original
osm_edge = osm_mask.filter(ImageFilter.FIND_EDGES)
osm_edge = osm_edge.filter(ImageFilter.MaxFilter)
mstr_msg("mstr_layergen", "Edge mask generated")
# This adds some natural looking shapes to these types of features
if self._value == "forest" or self._value == "nature_reserve":
epx = osm_edge.load()
imgd = ImageDraw.Draw(osm_mask)
# Walk through a grid of 200x200 - on the edge image
for y in range(0, osm_mask.height, int(osm_mask.height/200)):
for x in range(0, osm_mask.width, int(osm_mask.width/200)):
px = epx[x,y]
if px[3] == 255:
rx = randrange(30,60)
ry = randrange(30,60)
f = randrange(1,10)
# Do some magic - but not on edges
if x > 0 and x < osm_mask.width and y > 0 and y < osm_mask.height:
if f != 5:
imgd.ellipse((x-int(rx/2), y-int(ry/2), x+rx, y+ry), fill="black")
if f == 3 or f == 7:
imgd.ellipse((x-int(rx/2), y-int(ry/2), x+rx, y+ry), fill=(0,0,0,0))
# We need to change the image in certain conditions
if self._value == "hedge" and self._tag == "barrier":
osm_mask = osm_edge
# From here on in we will need to perform some adjustments on the masks, depending
# on what they are.
for i in mstr_mask_blur:
if i[0] == self._tag and i[1] == self._value:
osm_mask = osm_mask.filter(ImageFilter.BoxBlur(radius=i[2]))
break
# Begin producing a largely random image
samples = 250 # <- We need this in a moment
for i in range(samples):
imgid = 0
if len(ptc_src) == 1: imgid = 0
if len(ptc_src) >= 2:
imgid = randrange(1, len(ptc_src)) - 1
l = 0 - int(ptc_src[imgid].width / 2)
r = layer.width - int(ptc_src[imgid].width / 2)
t = 0 - int(ptc_src[imgid].height / 2)
b = layer.height - int(ptc_src[imgid].height / 2)
layer.alpha_composite( ptc_src[imgid], ( randrange(l, r), randrange(t, b) ) )
mstr_msg("mstr_layergen", "Layer image generated")
# Here we need to do some magic to make some features look more natural
if (self._tag == "landuse" and self._value == "meadow") or (self._tag == "natural" and self._value == "grassland") or (self._tag == "natural" and self._value == "heath"):
amt = randrange(1,3)
for i in range(1, amt):
ptc = randrange(1, 7)
img = Image.open(mstr_datafolder + "Textures\\tile\\completion\\p" + str(ptc)+".png")
lx = randrange( int(layer.width/20), layer.width - (int(layer.width/20)) - img.width )
ly = randrange( int(layer.width/20), layer.width - (int(layer.width/20)) - img.width )
layer.alpha_composite( img, (lx, ly) )
# We now need to add the seamless border
layer.alpha_composite( brd_src )
mstr_msg("mstr_layergen", "Layer image completed")
# And now for the Big Mac.
# Generate the layer from the mask.
layer_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
layer_pix = layer.load()
mask_pix = osm_mask.load()
layer_comp_pix = layer_comp.load()
for y in range(self._imgsize):
for x in range(self._imgsize):
if mask_pix[x, y][3] > 0:
rgb=layer_pix[x,y]
a=mask_pix[x,y]
if self._value == "residential":
layer_comp_pix[x, y] = ( rgb[0], rgb[1], rgb[2], int(a[3]/2))
if self._value != "residential":
layer_comp_pix[x, y] = ( rgb[0], rgb[1], rgb[2], a[3])
# For some things, we will need to add a border and then add this to the layer.
layer_border = None
if self._tag == "landuse":
if self._value == "forest" or self._value == "farmland":
osm_edge = osm_edge.filter(ImageFilter.ModeFilter(size=15))
osm_edge = osm_edge.filter(ImageFilter.BoxBlur(radius=2))
layer_border = self.genborder(osm_edge, "landuse", "meadow")
layer_comp.alpha_composite(layer_border)
# Give streams a more natural look
if self._tag == "waterway" and (self._value == "stream" or self._value == "river"):
osm_edge = osm_edge.filter(ImageFilter.ModeFilter(size=15))
osm_edge = osm_edge.filter(ImageFilter.BoxBlur(radius=2))
layer_border = self.genborder(osm_edge, "natural", "wetland")
layer_comp.alpha_composite(layer_border)
# Store layer
if self._is_completion == False:
layer_comp.save( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer.png" )
if self._is_completion == True:
layer_comp.save( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_tile-completion_layer.png" )
#layer_final.save( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer.png" )
mstr_msg("mstr_layergen", "Layer image finalized and saved.")
# Let's try our hand at pseudo shadows
if mstr_shadow_enabled == True:
if mstr_shadow_shift >= 2:
shadow = Image.new("RGBA", (self._imgsize, self._imgsize))
for sh in mstr_shadow_casters:
if self._tag == sh[0] and self._value == sh[1]:
mstr_msg("mstr_layergen", "Generating shadow for layer")
shadow_pix = shadow.load()
mask_pix = osm_mask.load()
for y in range(self._imgsize-1):
for x in range(self._imgsize-1):
m = mask_pix[x,y]
shf_x = 0
# Buildings get slightly closer shadows
if self._tag == "building":
shf_x = x + int(mstr_shadow_shift/2)
if self._tag != "building":
shf_x = x + mstr_shadow_shift
if shf_x <= self._imgsize-1:
a = mask_pix[x,y][3]
st = 0
if self._tag == "building":
st = random.uniform(0.25, mstr_shadow_strength/2)
if self._tag != "building":
st = random.uniform(0.45, mstr_shadow_strength)
ca = a * st
aa = int(ca)
shadow_pix[shf_x, y] = (0,0,0,aa)
shadow.save(mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer_shadow.png")
mstr_msg("mstr_layergen", "Shadow layer completed")
# Check if pixels touch the borders of the image, and if so -
# make a not of that in the database.
at=False
ar=False
ab=False
al=False
layer_pix = layer_comp.load() # <- Just to be safe
# Top scan
for i in range(0, self._imgsize-1):
p = layer_pix[i,0]
if p[3] > 0:
at=True
break
# Right scan
for i in range(0, self._imgsize-1):
p = layer_pix[self._imgsize-1,i]
if p[3] > 0:
ar=True
break
# Bottom scan
for i in range(0, self._imgsize-1):
p = layer_pix[i,self._imgsize-1]
if p[3] > 0:
ab=True
break
# Left scan
for i in range(0, self._imgsize-1):
p = layer_pix[1,i]
if p[3] > 0:
al=True
break
# Construct DB String
adjstr = ""
if at==True: adjstr = adjstr + "t"
if ar==True: adjstr = adjstr + "r"
if ab==True: adjstr = adjstr + "b"
if al==True: adjstr = adjstr + "l"
# Store into DB - but only if there is something to store
if adjstr != "":
if self._is_completion == False:
self._tiledb.insert_info(self._lat_number, self._lng_number, self._tag, self._value, src, adjstr)
if self._is_completion == True:
self._tiledb.insert_completion_info(self._lat_number, self._lng_number, self._tag, self._value, src, adjstr)
self._tiledb.commit_query()
self._tiledb.close_db()
mstr_msg("mstr_layergen", "Adjacency info stored in database")
# If we encounter one of these road-specific tags, we need to proceed differently.
if self._isline == True:
# We will need the mask in question
osm_mask = Image.open( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + ".png" )
# Generate an edge mask from the original
osm_edge = osm_mask.filter(ImageFilter.FIND_EDGES)
osm_edge = osm_edge.filter(ImageFilter.MaxFilter)
mstr_msg("mstr_layergen", "Edge mask generated")
# As above, we will apply the blur as noted in the defines
for i in mstr_mask_blur:
if i[0] == self._tag and i[1] == self._value:
osm_mask = osm_mask.filter(ImageFilter.BoxBlur(radius=i[2]))
break
osm_edge = osm_edge.filter(ImageFilter.BoxBlur(radius=1))
# And now for the Big Mac.
# Generate the layer from the mask. Same as above - except!
# This time we have no source material - instead we will fill the
# mask with a color that is appropriate for this street type.
layer_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
mask_pix = osm_mask.load()
edge_pix = osm_edge.load()
layer_comp_pix = layer_comp.load()
for y in range(self._imgsize):
for x in range(self._imgsize):
if mask_pix[x, y][3] > 0:
a=mask_pix[x,y]
e=edge_pix[x,y]
# Find a suitable color
d = 0
if self._tag == "aeroway" and self._value == "runway":
# It seems only runways with any other surface than concrete
# are mentioned in OSM. So we need to make sure when to render
# "concrete" and when to leave it. Only sometimes the word
# "asphalt" is mentioned
if rw_surface == "" or rw_surface == "asphalt":
d = randrange(81, 101)
layer_comp_pix[x, y] = ( d,d,d,a[3] )
if self._tag == "railway":
d = randrange(41, 61)
layer_comp_pix[x, y] = ( d,d,d,a[3] )
if self._tag == "highway" and self._value != "motorway":
d = randrange(140,160)
layer_comp_pix[x, y] = ( d,d,d,a[3] )
if self._tag == "highway" and self._value == "motorway":
d = randrange(1,20)
r = 86-d
g = 97-d
b = 106-d
layer_comp_pix[x, y] = ( r,g,b,a[3] )
if self._tag == "waterway" and (self._value == "stream" or self._value == "river"):
d = randrange(1, 15)
layer_comp_pix[x, y] = ( 129-d, 148-d, 159-d, a[3] )
if self._tag == "building":
r = randrange(1, 20)
if self._value == "yes":
d = (116-r, 117-r,135-r)
layer_comp_pix[x, y] = ( d[0], d[1], d[2], a[3] )
if e[3] > 0:
b = (96-r, 97-r, 115-r)
layer_comp_pix[x, y] = ( b[0],b[1],b[2],e[3] )
if self._value == "office" or self._value == "retail":
d = (100-r, 100-r, 100-r)
layer_comp_pix[x, y] = ( d[0], d[1], d[2], a[3] )
if e[3] > 0:
b = (80-r, 80-r, 80-r)
layer_comp_pix[x, y] = ( b[0],b[1],b[2],e[3] )
if self._value == "industrial":
d = (166-r, 170-r, 175-r)
layer_comp_pix[x, y] = ( d[0], d[1], d[2], a[3] )
if e[3] > 0:
b = (146-r, 150-r, 155-r)
layer_comp_pix[x, y] = ( b[0],b[1],b[2],e[3] )
if self._value == "track" or self._value == "path":
d = randrange(1,20)
r = 164 - d
g = 159 - d
b = 138 - d
layer_comp_pix[x, y] = ( r,g,b,a[3] )
mstr_msg("mstr_layergen", "Layer image generated")
# Building shadow
if mstr_shadow_enabled == True:
if self._tag == "building":
mstr_msg("mstr_layergen", "Generating shadow for layer")
shadow = Image.new("RGBA", (self._imgsize, self._imgsize))
shadow_pix = shadow.load()
mask_pix = osm_mask.load()
for y in range(self._imgsize-1):
for x in range(self._imgsize-1):
m = mask_pix[x,y]
shf_x = x + mstr_shadow_shift
if shf_x <= self._imgsize-1:
a = mask_pix[x,y][3]
st = random.uniform(0.45, mstr_shadow_strength)
ca = a * st
aa = int(ca)
shadow_pix[shf_x, y] = (0,0,0,aa)
shadow.save(mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer_shadow.png")
mstr_msg("mstr_layergen", "Shadow layer completed")
# Highways and runways of any kind get some special treatment
if (self._tag == "highway" and self._value == "motorway") or (self._tag == "highway" and self._value == "primary") or (self._tag == "highway" and self._value == "secondary") or (self._tag == "highway" and self._value == "tertiary") or (self._tag == "aeroway" and self._value == "runway"):
# We will now add some white lines for coolness
mask_pix = osm_edge.load()
layer_comp_pix = layer_comp.load()
for y in range(self._imgsize):
for x in range(self._imgsize):
if mask_pix[x, y][3] > 0:
# Find a suitable color
w = randrange(185, 215)
a=mask_pix[x,y]
layer_comp_pix[x, y] = ( w,w,w,a[3] )
mstr_msg("mstr_layergen", "Street lines added")
# Store layer
layer_comp.save( mstr_datafolder + "_cache\\" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer.png" )
mstr_msg("mstr_layergen", "Layer image finalized and saved.")