872 lines
39 KiB
Python
872 lines
39 KiB
Python
|
|
# -------------------------------------------------------------------
|
|
# ORTHOGRAPHIC
|
|
# Your personal aerial satellite. Always on. At any altitude.*
|
|
# Developed by MarStrMind
|
|
# License: Open Software License 3.0
|
|
# Up to date version always on marstr.online
|
|
# -------------------------------------------------------------------
|
|
# layergen.py
|
|
# Generates a full-sized geo layer image, based on the required layer
|
|
# type. We use a simple randomization method to generate such an
|
|
# image, which is then used for the final photo in photogen.
|
|
# -------------------------------------------------------------------
|
|
|
|
import glob
|
|
import os
|
|
import time
|
|
from random import randrange
|
|
import random
|
|
|
|
import PIL.ImageOps
|
|
from PIL import Image, ImageFilter, ImageDraw, ImageOps, ImageFile
|
|
from defines import *
|
|
from log import *
|
|
from tileinfo import *
|
|
from osmxml import *
|
|
from functions import *
|
|
from resourcegen import *
|
|
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
|
|
|
class mstr_layergen:
|
|
|
|
# Initializes the layer generator. can_choose will go false if we need
|
|
# a pre-determined layer from another tile, should this be adjacent to it.
|
|
# In this case layer_needed will be populated with the appropriate number.
|
|
# You also need the zoom level so that we can generate a scaled version.
|
|
def __init__(self, tag, value, lat, latnum, lng, lngnum, is_line, is_completion=False):
|
|
self._tag = tag
|
|
self._value = value
|
|
self._latitude = lat
|
|
self._lat_number = latnum
|
|
self._longitude = lng
|
|
self._lng_number = lngnum
|
|
self._layerborder = -1
|
|
self._is_completion = is_completion
|
|
# Define layer size depending on what is wanted
|
|
self._imgsize = 0
|
|
self._isline = is_line
|
|
if mstr_photores == 2048: self._imgsize = 2048
|
|
#if mstr_photores == 4096: self._imgsize = 6000
|
|
#mstr_msg("layergen", "Layer gen initialized")
|
|
|
|
# Define maximum latitude and longitude tile numbers
|
|
def set_max_latlng_tile(self, maxlatlng):
|
|
self._maxlat = maxlatlng[0]
|
|
self._maxlng = maxlatlng[1]
|
|
mstr_msg("layergen", "Maximum latitude and longitude tile numbers received")
|
|
|
|
# Set latlng folder
|
|
def set_latlng_folder(self, latlngfld):
|
|
self._latlngfld = latlngfld
|
|
|
|
# Tile info object
|
|
def open_tile_info(self):
|
|
self._tileinfo = mstr_tileinfo(self._latitude, self._longitude, self._lat_number, self._lng_number, self._latlngfld)
|
|
|
|
# This generates a "border" image, for example farmland usually has a small space of grass
|
|
# before the actual crop of farm field itself. This generates this "border" layer,
|
|
# and returns it.
|
|
# Needs the actual edge mask, and the tag and value to be used as border.
|
|
# Perform necessary adjustments on the mask prior to this call, for example blurring or
|
|
# other effects.
|
|
def genborder(self, edgemask, tag, value):
|
|
layer = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
root_folder = mstr_datafolder + "textures/" + tag + "/" + value
|
|
|
|
# Determine which sources we use
|
|
brd = glob.glob(root_folder + "/brd/b*.png")
|
|
src = -1
|
|
if len(brd) == 1: src=1
|
|
if len(brd) >= 2:
|
|
src = randrange(1, len(brd)+1)
|
|
ptc = glob.glob(root_folder + "/ptc/b" + str(src) + "_p*.png")
|
|
|
|
# Load in the sources to work with
|
|
brd_src = Image.open(root_folder + "/brd/b" + str(src) + ".png")
|
|
ptc_src = []
|
|
for p in ptc:
|
|
pimg = Image.open(p)
|
|
pimg = pimg.rotate(randrange(0, 360), expand=True)
|
|
ptc_src.append(pimg)
|
|
mstr_msg("layergen", "Border sources selected")
|
|
|
|
# Begin producing a largely random image
|
|
samples = 250 # <- We need this in a moment
|
|
for i in range(samples):
|
|
imgid = 0
|
|
if len(ptc_src) == 1: imgid = 0
|
|
if len(ptc_src) >= 2:
|
|
imgid = randrange(1, len(ptc_src)+1) - 1
|
|
l = 0 - int(ptc_src[imgid].width / 2)
|
|
r = layer.width - int(ptc_src[imgid].width / 2)
|
|
t = 0 - int(ptc_src[imgid].height / 2)
|
|
b = layer.height - int(ptc_src[imgid].height / 2)
|
|
layer.alpha_composite( ptc_src[imgid], ( randrange(l, r), randrange(t, b) ) )
|
|
mstr_msg("layergen", "Border image generated")
|
|
|
|
# We now need to add the seamless border
|
|
layer.alpha_composite( brd_src )
|
|
mstr_msg("layergen", "Layer image completed")
|
|
|
|
# And now for the Big Mac.
|
|
# Generate the layer from the mask.
|
|
layer_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
layer_final = Image.composite(layer, layer_comp, edgemask)
|
|
|
|
# Provide the image
|
|
return layer_final
|
|
|
|
|
|
# Find the source to use pre-determined in phase one
|
|
def findLayerSource(self):
|
|
# The source number
|
|
src = []
|
|
|
|
# The already existing source data
|
|
srcfile = mstr_datafolder + "z_orthographic/data/" + self._latlngfld + "/" + str(self._lat_number) + "_" + str(self._lng_number)
|
|
|
|
# Let's open the file and find our entry
|
|
with open(srcfile) as file:
|
|
for line in file:
|
|
linedata = line.split(" ")
|
|
if linedata[0] == self._tag and linedata[1] == self._value:
|
|
src = linedata[2].split(",")
|
|
break
|
|
|
|
# Should we encounter a 0 length at this point, we can choose something
|
|
# It means it touches no border as it was not found in the file
|
|
if len(src) == 0:
|
|
while len(src) < 6:
|
|
pick = randrange(1, 16)
|
|
if pick not in src: src.append(pick)
|
|
|
|
return src
|
|
|
|
|
|
# Find layer contrast to apply, if any
|
|
def findLayerContrast(self, res):
|
|
|
|
contrast = 0
|
|
|
|
# The already existing source data
|
|
srcfile = mstr_datafolder + "z_orthographic/data/" + self._latlngfld + "/ctrdata"
|
|
|
|
# Let's open the file and find our entry
|
|
with open(srcfile) as file:
|
|
for line in file:
|
|
linedata = line.split(" ")
|
|
if len(linedata) > 1: # Make sure we don't break at last line of data file
|
|
if linedata[0] == self._tag and linedata[1] == self._value and linedata[2] == res:
|
|
contrast = int(linedata[3])
|
|
break
|
|
|
|
return contrast
|
|
|
|
|
|
# Generates some random tree.
|
|
# We will now move away from using pre-made trees...
|
|
# they didn't look so great
|
|
def generate_tree(self):
|
|
sx = randrange(18, 31)
|
|
sy = randrange(18, 31)
|
|
|
|
treepoly = Image.new("RGBA", (sx, sy))
|
|
draw = ImageDraw.Draw(treepoly)
|
|
|
|
draw.ellipse((4, 4, sx - 4, sy - 4), fill="black")
|
|
|
|
tree = Image.new("RGBA", (sx, sy))
|
|
treepx = tree.load()
|
|
maskpx = treepoly.load()
|
|
|
|
# How many tree points do we want?
|
|
treepts = 75
|
|
# How many of those have been drawn?
|
|
ptsdrawn = 0
|
|
|
|
bc = [
|
|
(36, 50, 52),
|
|
(30, 41, 39),
|
|
(32, 45, 37),
|
|
(32, 39, 49),
|
|
(33, 34, 40),
|
|
(44, 50, 53),
|
|
(40, 46, 48),
|
|
(14, 31, 38),
|
|
(17, 41, 33),
|
|
(39, 56, 35),
|
|
(51, 51, 42),
|
|
(12, 27, 31),
|
|
(45, 59, 48),
|
|
(37, 54, 29),
|
|
(59, 50, 34),
|
|
(59, 59, 35),
|
|
(59, 51, 35),
|
|
(70, 72, 45),
|
|
(48, 59, 44),
|
|
(29, 47, 23),
|
|
(47, 61, 43),
|
|
(29, 68, 15),
|
|
(53, 77, 63),
|
|
(20, 68, 40)
|
|
]
|
|
|
|
bcp = randrange(0, len(bc))
|
|
|
|
treedraw = ImageDraw.Draw(tree)
|
|
while ptsdrawn < treepts + 1:
|
|
rx = randrange(0, sx)
|
|
ry = randrange(0, sy)
|
|
mp = maskpx[rx, ry]
|
|
if mp[3] > 0:
|
|
d = randrange(0, 51)
|
|
r = bc[bcp][0]
|
|
g = bc[bcp][1] + d
|
|
b = bc[bcp][2] + (d // 2)
|
|
a = randrange(170, 256)
|
|
c = (r, g, b, a)
|
|
ex = randrange(2, 5)
|
|
ey = randrange(2, 5)
|
|
treedraw.ellipse((rx - (ex // 2), ry - (ey // 2), rx + (ey // 2), ry + (ey // 2)), fill=c)
|
|
ptsdrawn = ptsdrawn + 1
|
|
|
|
for y in range(0, tree.height):
|
|
for x in range(0, tree.width):
|
|
tp = treepx[x, y]
|
|
diff = randrange(0, 31)
|
|
nc = (tp[0] - diff, tp[1] - diff, tp[2] - diff, tp[3])
|
|
treepx[x, y] = nc
|
|
|
|
tree = tree.filter(ImageFilter.GaussianBlur(radius=0.5))
|
|
|
|
for y in range(0, tree.height):
|
|
for x in range(0, tree.width):
|
|
tp = treepx[x, y]
|
|
diff = randrange(0, 51)
|
|
nc = (tp[0] - diff, tp[1] - diff, tp[2] - diff, tp[3])
|
|
treepx[x, y] = nc
|
|
|
|
return tree
|
|
|
|
|
|
# This generates the layer from the defined mask
|
|
def genlayer(self, mask, xml):
|
|
|
|
mstr_msg("layergen", "Layer to be generated: " + str(self._latitude) + "-" + str(self._lat_number) + ":" + str(self._longitude) + "-" + str(self._lng_number) + " -- tag: " + self._tag + " - value: " + self._value )
|
|
|
|
# Before we generate the layer, let's check for airports in this chunk
|
|
mstr_msg("layergen", "Checking for airport/s with ICAO code")
|
|
|
|
icao = None
|
|
if xml != None:
|
|
icao = xml.find_icao_codes()
|
|
mstr_msg("layergen", "Found " + str(len(icao)) + " airport/s")
|
|
# Runway surface, if any other than concrete/asphalt
|
|
rw_surface = ""
|
|
# If we find an airport, make a note ...
|
|
if icao != None:
|
|
if len(icao) >= 1 and self._is_completion == False:
|
|
rw_surface = xml.find_runway_surface()
|
|
|
|
# The image for the layer itself
|
|
layer = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
layer_pix = layer.load()
|
|
|
|
# There are some things we need to use sources for, and some things, we do not.
|
|
# We need to differentiate that.
|
|
|
|
if (self._isline == False and self._tag != "building") or (self._is_completion == True):
|
|
# Determine where we get the source material from
|
|
root_folder = mstr_datafolder + "textures/"
|
|
for s in mstr_ortho_layers:
|
|
if s[0] == self._tag and s[1] == self._value:
|
|
fld_main = len(s)-2
|
|
fld_sub = len(s)-1
|
|
root_folder = root_folder + s[fld_main] + "/" + s[fld_sub]
|
|
|
|
# Determine which sources to use.
|
|
src = self.findLayerSource()
|
|
srcstr = ""
|
|
for s in range(len(src)):
|
|
srcstr = srcstr + str(src[s])
|
|
if s < len(src)-1:
|
|
srcstr = srcstr + ","
|
|
|
|
# Failsafe
|
|
if srcstr == "0":
|
|
srcstr = ""
|
|
numbers = list(range(1, 16))
|
|
src = random.sample(numbers, 5)
|
|
for s in range(len(src)):
|
|
srcstr = srcstr + str(src[s])
|
|
if s < len(src)-1:
|
|
srcstr = srcstr + ","
|
|
|
|
# Patch and border sources. There can only be one for each.
|
|
brd_src = None
|
|
ptc_src = []
|
|
|
|
# Find this layer's predetermined contrast
|
|
lyr_contrast = self.findLayerContrast(srcstr)
|
|
if lyr_contrast != 0:
|
|
mstr_msg("layergen", "Applying contrast value: " + str(lyr_contrast))
|
|
|
|
# Should this not exist yet, we need to create it
|
|
#if os.path.isfile(gensrc_ptc) == False:
|
|
rg = mstr_resourcegen(self._tag, self._value, src)
|
|
rg.setLayerContrast(int(lyr_contrast))
|
|
lyr_res = rg.gensource()
|
|
|
|
# Open the images
|
|
ptc_src.append(lyr_res[0]) # Used to be an array, so let's keep it
|
|
brd_src = lyr_res[1]
|
|
|
|
mstr_msg("layergen", "Layer sources selected")
|
|
|
|
# Generate an edge mask from the original
|
|
osm_edge = mask.filter(ImageFilter.FIND_EDGES)
|
|
osm_edge = osm_edge.filter(ImageFilter.MaxFilter)
|
|
mstr_msg("layergen", "Edge mask generated")
|
|
|
|
# This adds some natural looking shapes to these types of features
|
|
if self._value == "forest" or self._value == "nature_reserve":
|
|
epx = osm_edge.load()
|
|
imgd = ImageDraw.Draw(mask)
|
|
|
|
# Walk through a grid of 100x100 - on the edge image
|
|
for y in range(0, mask.height, int(mask.height/100)):
|
|
for x in range(0, mask.width, int(mask.width/100)):
|
|
px = epx[x,y]
|
|
if px[3] == 255:
|
|
rx = randrange(24,60)
|
|
ry = randrange(24,60)
|
|
f = randrange(1,10)
|
|
|
|
# Randomize the found locations a little
|
|
psx = randrange(x-11, x+11)
|
|
psy = randrange(y-11, y+11)
|
|
|
|
# Do some magic - but not on edges
|
|
if x > 0 and x < mask.width and y > 0 and y < mask.height:
|
|
if f != 5:
|
|
imgd.ellipse((psx-int(rx/2), psy-int(ry/2), psx+rx, psy+ry), fill="black")
|
|
if f == 3 or f == 7:
|
|
imgd.ellipse((psx-int(rx/2), psy-int(ry/2), psx+rx, psy+ry), fill=(0,0,0,0))
|
|
|
|
|
|
# We need to change the image in certain conditions
|
|
if self._value == "hedge" and self._tag == "barrier":
|
|
mask = osm_edge
|
|
|
|
# From here on in we will need to perform some adjustments on the masks, depending
|
|
# on what they are.
|
|
for i in mstr_mask_blur:
|
|
if i[0] == self._tag and i[1] == self._value:
|
|
if self._tag != "place" and (self._value != "sea" or self._value != "ocean"):
|
|
mask = mask.filter(ImageFilter.BoxBlur(radius=i[2]))
|
|
break
|
|
|
|
# Begin producing a largely random image
|
|
samples = 250 # <- We need this in a moment
|
|
for i in range(samples):
|
|
imgid = 0
|
|
if len(ptc_src) == 1: imgid = 0
|
|
if len(ptc_src) >= 2:
|
|
imgid = randrange(1, len(ptc_src)+1) - 1
|
|
l = 0 - int(ptc_src[imgid].width / 2)
|
|
r = layer.width - int(ptc_src[imgid].width / 2)
|
|
t = 0 - int(ptc_src[imgid].height / 2)
|
|
b = layer.height - int(ptc_src[imgid].height / 2)
|
|
layer.alpha_composite( ptc_src[imgid], ( randrange(l, r), randrange(t, b) ) )
|
|
mstr_msg("layergen", "Layer image generated")
|
|
|
|
# We now need to add the seamless border
|
|
layer.alpha_composite( brd_src )
|
|
|
|
# Here we need to do some magic to make some features look more natural
|
|
if (self._tag == "landuse" and self._value == "meadow") or (
|
|
self._tag == "natural" and self._value == "grassland") or (
|
|
self._tag == "natural" and self._value == "heath") or (
|
|
self._tag == "landuse" and self._value == "cemetery") or (
|
|
self._tag == "landuse" and self._value == "residential"):
|
|
amt = randrange(5, 21)
|
|
masks = glob.glob(mstr_datafolder + "textures/tile/completion/*.png")
|
|
patchtags = [
|
|
["landuse", "meadow"],
|
|
["landuse", "grass"],
|
|
["natural", "heath"],
|
|
["natural", "scrub"]
|
|
]
|
|
for i in range(1, amt + 1):
|
|
pick = randrange(0, len(masks))
|
|
patchmask = Image.open(masks[pick])
|
|
patchmask = patchmask.rotate(randrange(0, 360), expand=True)
|
|
|
|
# Make sure patch is within bounds
|
|
if patchmask.width > self._imgsize or patchmask.height > self._imgsize:
|
|
patchmask = patchmask.resize((mstr_photores, mstr_photores), Image.Resampling.BILINEAR)
|
|
|
|
patchpix = patchmask.load()
|
|
# Pick from possible tags and values for the patches
|
|
numbers = list(range(1, 16))
|
|
src = random.sample(numbers, 5)
|
|
|
|
patchpick = randrange(0, len(patchtags))
|
|
ctr = randrange(1, 4)
|
|
rg = mstr_resourcegen(patchtags[patchpick][0], patchtags[patchpick][1], src)
|
|
rg.setLayerContrast(ctr)
|
|
ptch = rg.gensource()
|
|
|
|
# Generate a full size of the source
|
|
ptc_full = Image.new("RGBA", (mstr_photores, mstr_photores))
|
|
|
|
# Generate the source image
|
|
for p in range(1, 201):
|
|
rx = randrange(0 - int(ptch[0].width / 2), ptc_full.width - int(ptch[0].width / 2))
|
|
ry = randrange(0 - int(ptch[0].height / 2), ptc_full.height - int(ptch[0].height / 2))
|
|
ptc_full.alpha_composite(ptch[0], dest=(rx, ry))
|
|
|
|
rg_img = ptc_full
|
|
rg_pix = rg_img.load()
|
|
|
|
# The patch to be used in the layer
|
|
layerpatch = Image.new("RGBA", (patchmask.width, patchmask.height))
|
|
lp_pix = layerpatch.load()
|
|
for y in range(0, patchmask.height):
|
|
for x in range(0, patchmask.width):
|
|
ptc_msk = patchpix[x,y]
|
|
if ptc_msk[3] > 0:
|
|
oc = rg_pix[x,y]
|
|
nc = ( oc[0], oc[1], oc[2], ptc_msk[3] )
|
|
lp_pix[x,y] = nc
|
|
|
|
#layerpatch = layerpatch.rotate(randrange(0, 360), expand=True)
|
|
|
|
lx = randrange(self._imgsize - layerpatch.width)
|
|
ly = randrange(self._imgsize - layerpatch.height)
|
|
layer.alpha_composite(layerpatch, (lx, ly))
|
|
|
|
|
|
# And now for the Big Mac.
|
|
# Generate the layer from the mask.
|
|
layer_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
layer_pix = layer.load()
|
|
mask_pix = mask.load()
|
|
layer_comp_pix = layer_comp.load()
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
if mask_pix[x, y][3] > 0:
|
|
rgb=layer_pix[x,y]
|
|
a=mask_pix[x,y]
|
|
layer_comp_pix[x, y] = ( rgb[0], rgb[1], rgb[2], a[3])
|
|
|
|
|
|
# Add a white-ish border around pitches
|
|
if self._tag == "leisure" and self._value == "pitch":
|
|
pitch_edge = osm_edge
|
|
pitch_edge = pitch_edge.filter(ImageFilter.GaussianBlur(radius=0.5))
|
|
pitch_mask = pitch_edge.load()
|
|
|
|
# ImageOps.invert does not like RGBA images for inversion. So I need to do it.
|
|
for y in range(0, self._imgsize):
|
|
for x in range(0, self._imgsize):
|
|
pm = pitch_mask[x,y]
|
|
if pm[3] > 0:
|
|
d = randrange(0, 21)
|
|
layer_comp_pix[x,y] = ( 110-pm[0]-d, 110-pm[1]-d, 110-pm[2]-d, pm[3]-(d*2) )
|
|
|
|
|
|
# Layer complete
|
|
mstr_msg("layergen", "Layer image completed.")
|
|
|
|
|
|
# Let's try our hand at pseudo shadows
|
|
if mstr_shadow_enabled == True:
|
|
if mstr_shadow_shift >= 2:
|
|
shadow = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
for sh in mstr_shadow_casters:
|
|
if self._tag == sh[0] and self._value == sh[1]:
|
|
mstr_msg("layergen", "Generating shadow for layer")
|
|
shadow_pix = shadow.load()
|
|
mask_pix = mask.load()
|
|
shf = 1
|
|
while shf < mstr_shadow_shift:
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
mp = layer_comp_pix[x,y]
|
|
if mp[3] == 255:
|
|
if x+(shf*2) < self._imgsize and y+shf < self._imgsize:
|
|
rndshd = randrange(5, 210)
|
|
shadow_pix[x+(shf*2), y+shf] = (0,0,0,rndshd)
|
|
shf = shf+1
|
|
|
|
# Tree removal
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
lp = layer_comp_pix[x,y]
|
|
if lp[3] >= 250:
|
|
shadow_pix[x,y] = (0,0,0,0)
|
|
|
|
shadow = shadow.filter(ImageFilter.GaussianBlur(radius=1.5))
|
|
|
|
#shadow.save(mstr_datafolder + "_cache/" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer_shadow.png")
|
|
shadow.alpha_composite(layer_comp)
|
|
layer_comp = shadow
|
|
mstr_msg("layergen", "Shadow layer completed")
|
|
|
|
# Return the completed image
|
|
return layer_comp
|
|
|
|
|
|
# ---------------------------------------------------------------------------------------
|
|
# ---------------------------------------------------------------------------------------
|
|
# ---------------------------------------------------------------------------------------
|
|
|
|
# If we encounter one of these road-specific tags, we need to proceed differently.
|
|
|
|
if self._isline == True or self._tag != "building":
|
|
|
|
# We will need the mask in question
|
|
#mask = Image.open( mstr_datafolder + "_cache/" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + ".png" )
|
|
|
|
# Generate an edge mask from the original
|
|
osm_edge = mask.filter(ImageFilter.FIND_EDGES)
|
|
osm_edge = osm_edge.filter(ImageFilter.MaxFilter)
|
|
mstr_msg("layergen", "Edge mask generated")
|
|
|
|
# As above, we will apply the blur as noted in the defines
|
|
# Except for buildings
|
|
if self._tag != "building":
|
|
for i in mstr_mask_blur:
|
|
if i[0] == self._tag and i[1] == self._value:
|
|
mask = mask.filter(ImageFilter.BoxBlur(radius=i[2]))
|
|
break
|
|
|
|
|
|
# And now for the Big Mac.
|
|
# Generate the layer from the mask. Same as above - except!
|
|
# This time we have no source material - instead we will fill the
|
|
# mask with a color that is appropriate for this street type.
|
|
layer_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
mask_pix = mask.load()
|
|
edge_pix = osm_edge.load()
|
|
layer_comp_pix = layer_comp.load()
|
|
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
if mask_pix[x, y][3] > 0:
|
|
a=mask_pix[x,y]
|
|
e=edge_pix[x,y]
|
|
# Find a suitable color
|
|
d = 0
|
|
if self._tag == "aeroway" and self._value == "runway":
|
|
# It seems only runways with any other surface than concrete
|
|
# are mentioned in OSM. So we need to make sure when to render
|
|
# "concrete" and when to leave it. Only sometimes the word
|
|
# "asphalt" is mentioned
|
|
if rw_surface == "" or rw_surface == "asphalt":
|
|
d = randrange(81, 101)
|
|
layer_comp_pix[x, y] = ( d,d,d,a[3] )
|
|
if self._tag == "aeroway" and self._value == "taxiway":
|
|
# Almost the same as above
|
|
d = randrange(81, 101)
|
|
layer_comp_pix[x, y] = ( d,d,d,a[3] )
|
|
if self._tag == "railway":
|
|
d = randrange(41, 61)
|
|
layer_comp_pix[x, y] = ( d,d,d,a[3] )
|
|
if self._tag == "highway" and self._value != "motorway":
|
|
d = randrange(0, 31)
|
|
dr = 80+d
|
|
dg = 80+d
|
|
db = 85+d
|
|
da = 255
|
|
layer_comp_pix[x, y] = ( dr,dg,db,da )
|
|
if self._tag == "highway" and self._value == "motorway":
|
|
d = randrange(0, 46)
|
|
dr = 47+d
|
|
dg = 58+d
|
|
db = 60+d
|
|
layer_comp_pix[x, y] = ( dr,dg,db,255 )
|
|
if self._tag == "highway" and (self._value == "footway" or self._value == "track" or self._value == "path"):
|
|
dr = randrange(158, 183)
|
|
dg = randrange(143, 178)
|
|
db = randrange(90, 161)
|
|
da = a[3]-20
|
|
layer_comp_pix[x, y] = (dr, dg, db, da)
|
|
if self._tag == "waterway" and (self._value == "stream" or self._value == "river"):
|
|
d = randrange(1, 15)
|
|
# Rock, grass, water
|
|
mats = [ (48-d, 45-d, 42-d), (58-d, 81-d, 41-d), (129-d, 148-d, 159-d) ]
|
|
# Pick one of those
|
|
#pick = randrange(1,4)
|
|
pick = 2
|
|
t = a[3]-d
|
|
if t < 0: t = 0
|
|
if e[3] > 0:
|
|
layer_comp_pix[x, y] = ( mats[pick-1][0], mats[pick-1][1], mats[pick-1][2], 35 )
|
|
|
|
# A bit different for tree rows
|
|
if self._tag == "natural" and self._value == "tree_row":
|
|
trees = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
treespx = trees.load()
|
|
for t in range(80001):
|
|
lx = randrange(self._imgsize)
|
|
ly = randrange(self._imgsize)
|
|
a = mask_pix[lx,ly]
|
|
# Just mark the hit with a black pixel.
|
|
# This will be used as "target" by photogen
|
|
if a[3] > 0:
|
|
if lx < self._imgsize and ly < self._imgsize:
|
|
c = (0,0,0,1)
|
|
treespx[lx,ly] = c
|
|
layer_comp.alpha_composite(trees)
|
|
|
|
mstr_msg("layergen", "Layer image generated")
|
|
|
|
|
|
# Highways and runways of any kind get some special treatment
|
|
if (self._tag == "highway" and self._value == "motorway") or (self._tag == "highway" and self._value == "primary") or (self._tag == "highway" and self._value == "secondary") or (self._tag == "highway" and self._value == "tertiary") or (self._tag == "aeroway" and self._value == "runway"):
|
|
# We will now add some white lines for coolness
|
|
osm_edge = mask.filter(ImageFilter.FIND_EDGES)
|
|
mask_pix = osm_edge.load()
|
|
layer_comp_pix = layer_comp.load()
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
if mask_pix[x, y][3] > 0:
|
|
# Find a suitable color
|
|
w = randrange(125, 156)
|
|
a=mask_pix[x,y]
|
|
layer_comp_pix[x, y] = ( w,w,w,a[3] )
|
|
|
|
if self._tag == "highway" and self._value == "residential":
|
|
osm_edge = mask.filter(ImageFilter.FIND_EDGES)
|
|
mask_pix = osm_edge.load()
|
|
layer_comp_pix = layer_comp.load()
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
if mask_pix[x, y][3] > 0:
|
|
# Find a suitable color
|
|
w = randrange(150,181)
|
|
a=mask_pix[x,y]
|
|
layer_comp_pix[x, y] = ( w,w,w,a[3] )
|
|
mstr_msg("layergen", "Street lines added")
|
|
|
|
|
|
# Same as above, except that streams are lines and are not drawn as polygons.
|
|
# Therefore this part needs to be in here as well.
|
|
if self._tag == "waterway" and self._value == "stream":
|
|
mstr_msg("layergen", "Generating inland water mask")
|
|
inl_mask = Image.new("RGBA", (self._imgsize, self._imgsize), (0,0,0,0))
|
|
lyr_pix = layer_comp.load()
|
|
inl_pix = inl_mask.load()
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
l = lyr_pix[x,y]
|
|
if l[3] > 65:
|
|
b = 255 - l[3]
|
|
inl_pix[x,y] = (255,0,255,255)
|
|
#inl_mask.save(mstr_datafolder + "_cache/" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer_mask.png")
|
|
mstr_msg("layergen", "Inland water mask generated and saved")
|
|
|
|
|
|
# Blur roads a bit
|
|
if self._tag == "highway":
|
|
layer_comp = layer_comp.filter(ImageFilter.GaussianBlur(radius=1))
|
|
|
|
|
|
# Store layer
|
|
#layer_comp.save( mstr_datafolder + "_cache/" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(self._longitude) + "-" + str(self._lng_number) + "_" + self._tag + "-" + self._value + "_layer.png" )
|
|
mstr_msg("layergen", "Layer image finalized and saved.")
|
|
|
|
|
|
# Return image
|
|
return layer_comp
|
|
|
|
# ------------------------------------------------------------------------------------------
|
|
# ------------------------------------------------------------------------------------------
|
|
# ------------------------------------------------------------------------------------------
|
|
|
|
# As we now have a specific pool for buildings, we will need to enter a third branch
|
|
# to handle all kinds of buildings in the orthos.
|
|
if self._tag == "building":
|
|
# Access to pixels from OSM mask
|
|
mask_pix = mask.load()
|
|
|
|
# Separate images for additional details
|
|
tree_shadow = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
trees = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
shadow = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
bld_src = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
bld_main = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
osm_edge = mask.filter(ImageFilter.FIND_EDGES)
|
|
|
|
# Find a source image to use
|
|
srclist = glob.glob(mstr_datafolder + "textures/" + self._tag + "/" + self._value + "/*.png")
|
|
srcnum = randrange(1, len(srclist)+1)
|
|
|
|
# Patch and border sources. There can only be one for each.
|
|
brd_src = None
|
|
numbers = list(range(1, len(srclist)))
|
|
res = random.sample(numbers, 4)
|
|
ptc_src = []
|
|
|
|
for p in range(0, len(res)):
|
|
ptc_src.append(Image.open(mstr_datafolder + "textures/" + self._tag + "/" + self._value + "/" + str(res[p]) + ".png"))
|
|
|
|
# Set some contrast
|
|
lyr_contrast = 0.85
|
|
|
|
# Open the images
|
|
|
|
#ptc_src.append( ptc_img ) # Used to be an array, so let's keep it
|
|
#brd_src = bldg_src[1]
|
|
|
|
# Begin producing a largely random image
|
|
samples = 250 # <- We need this in a moment
|
|
for i in range(samples):
|
|
imgid = 0
|
|
if len(ptc_src) == 1: imgid = 0
|
|
if len(ptc_src) >= 2:
|
|
imgid = randrange(0, len(ptc_src))
|
|
i = ptc_src[imgid].rotate(randrange(0, 360), expand=True)
|
|
l = 0 - int(i.width / 2)
|
|
r = layer.width - int(i.width / 2)
|
|
t = 0 - int(i.height / 2)
|
|
b = layer.height - int(i.height / 2)
|
|
bld_src.alpha_composite(i, (randrange(l, r), randrange(t, b)))
|
|
mstr_msg("layergen", "Layer image generated")
|
|
|
|
bld_src_pix = bld_src.load()
|
|
bld_main_pix = bld_main.load()
|
|
for y in range(0, self._imgsize):
|
|
for x in range(0, self._imgsize):
|
|
mp = mask_pix[x,y]
|
|
bp = bld_src_pix[x,y]
|
|
if mp[3] > 0:
|
|
nc = ( bp[0], bp[1], bp[2], mp[3] )
|
|
bld_main_pix[x,y] = nc
|
|
|
|
bld_main = bld_main.filter(ImageFilter.GaussianBlur(radius=0.5))
|
|
osm_edge = osm_edge.filter(ImageFilter.GaussianBlur(radius=1.5))
|
|
bld_edge = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
bld_edge_pix = bld_edge.load()
|
|
edge_pix = osm_edge.load()
|
|
for y in range(osm_edge.height):
|
|
for x in range(osm_edge.width):
|
|
ep = edge_pix[x,y]
|
|
bp = bld_src_pix[x,y]
|
|
if ep[3] == 255 and bp[3] == 255:
|
|
nc = (0,0,0,60)
|
|
bld_edge_pix[x,y] = nc
|
|
bld_main.alpha_composite(bld_edge)
|
|
|
|
|
|
if mstr_shadow_enabled == True:
|
|
fn = mstr_datafolder + "_cache/" + str(self._latitude) + "-" + str(self._lat_number) + "_" + str(
|
|
self._longitude) + "-" + str(self._lng_number) + "_building-" + self._value + "_layer_shadow.png"
|
|
if os.path.isfile(fn):
|
|
shadow = Image.open(fn)
|
|
|
|
# Add some random trees
|
|
for t in range(0, 5000):
|
|
loc_x = randrange(0, self._imgsize)
|
|
loc_y = randrange(0, self._imgsize)
|
|
shf_val = 21
|
|
shf_x = randrange(loc_x - shf_val, loc_x + shf_val)
|
|
shf_y = randrange(loc_y - shf_val, loc_y + shf_val)
|
|
mp = mask_pix[loc_x, loc_y]
|
|
if mp[3] == 255:
|
|
shf_att = 0
|
|
shf_ok = False
|
|
shf_x = randrange(loc_x - shf_val, loc_x + shf_val)
|
|
shf_y = randrange(loc_y - shf_val, loc_y + shf_val)
|
|
while shf_att < 51:
|
|
if shf_x > 0 and shf_x < self._imgsize and shf_y > 0 and shf_y < self._imgsize:
|
|
sp = mask_pix[shf_x, shf_y]
|
|
if sp[3] == 0:
|
|
shf_ok = True
|
|
break
|
|
else:
|
|
shf_att = shf_att + 1
|
|
else:
|
|
shf_val = shf_val + 10
|
|
|
|
shf_att = shf_att + 1
|
|
|
|
if shf_ok == True:
|
|
tree = self.generate_tree()
|
|
trees.alpha_composite(tree, (shf_x, shf_y))
|
|
|
|
# Perform correction for tree rendering
|
|
tree_pix = trees.load()
|
|
for y in range (0, self._imgsize):
|
|
for x in range(0, self._imgsize):
|
|
mp = mask_pix[x,y]
|
|
tp = tree_pix[x,y]
|
|
if mp[3] == 255 and tp[3] == 255:
|
|
tree_pix[x,y] = (0,0,0,0)
|
|
|
|
|
|
|
|
if mstr_shadow_enabled == True:
|
|
tree_pix = trees.load()
|
|
shadow_pix = tree_shadow.load()
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
tp = tree_pix[x, y]
|
|
if tp[3] > 0:
|
|
rndshd = randrange(5, 210)
|
|
sc = (0, 0, 0, rndshd)
|
|
if x + 8 < self._imgsize and y + 5 < self._imgsize:
|
|
shadow_pix[x + 8, y + 5] = sc
|
|
tree_shadow = tree_shadow.filter(ImageFilter.GaussianBlur(radius=2))
|
|
tree_shadow.alpha_composite(trees)
|
|
|
|
# Let's try this one on for size
|
|
bld_comp = Image.new("RGBA", (self._imgsize, self._imgsize))
|
|
bld_comp.alpha_composite(tree_shadow)
|
|
bld_comp.alpha_composite(trees)
|
|
shd_p = shadow.load()
|
|
for y in range(self._imgsize):
|
|
for x in range(self._imgsize):
|
|
c = shd_p[x, y]
|
|
if c[3] > 0:
|
|
s = (0, 0, 0, 120 - (randrange(0, 21)))
|
|
shd_p[x, y] = s
|
|
shadow = shadow.filter(ImageFilter.GaussianBlur(radius=1))
|
|
bld_comp.alpha_composite(shadow)
|
|
#bld_comp = bld_comp.filter(ImageFilter.GaussianBlur(radius=1.1))
|
|
bld_main = ImageEnhance.Contrast(bld_main).enhance(lyr_contrast)
|
|
bld_comp.alpha_composite(bld_main)
|
|
|
|
return bld_comp
|
|
|
|
|
|
|
|
# Find the next "by-ten" numbers for the current latitude and longitude
|
|
def find_earthnavdata_number(self):
|
|
earthnavdata = []
|
|
lat = abs(int(self._latitude / 10) * 10)
|
|
lng = abs(int(self._longitude / 10) * 10)
|
|
earthnavdata.append(lat)
|
|
earthnavdata.append(lng)
|
|
return earthnavdata
|
|
|
|
# Construct an X-Plane compatible folder name for latitude and longitude
|
|
def xplane_latlng_folder(self, numbers):
|
|
fstr = ""
|
|
if numbers[0] >= 0: fstr = "+"
|
|
if numbers[0] < 0: fstr = "-"
|
|
if abs(numbers[0]) < 10: fstr = fstr + "0" + str(numbers[0])
|
|
if abs(numbers[0]) >= 10 and numbers[0] <= 90: fstr = fstr + str(numbers[0])
|
|
|
|
if numbers[1] >= 0: fstr = fstr + "+"
|
|
if numbers[1] < 0: fstr = fstr + "-"
|
|
if abs(numbers[1]) < 10: fstr = fstr + "00" + str(numbers[1])
|
|
if abs(numbers[1]) >= 10 and numbers[0] <= 99: fstr = fstr + "0" + str(numbers[1])
|
|
if abs(numbers[1]) >= 100 : fstr = fstr + str(numbers[1])
|
|
|
|
return fstr
|